Logo Università degli Studi di Milano


Arithmetic Geometry, Motives and Number Theory  

The study of algebraic varieties and their properties is vast and heterogeneous: one approach is the one given by motives (both Grothendieck’s and Deligne’s, but also by Voevodsky, Morel and Nori) and by the study of the arithmetic properties through Hodge theory, Shimura varieties, as well as L-functions and Iwasawa’s theory.

Specific subjects are

- p-adic Hodge theory, Shimura varieties and Torelli locus, Deligne 1-motives (Fabrizio Andreatta).

- Motives (a la Grothendieck, Deligne, Voevodsky, Nori, etc.) versus homotopical algebra and Hodge theory (Luca Barbieri-Viale).

- Elliptic curves, modular forms, L-functions, Iwasawa theory, higher dimensional cycles (Massimo Bertolini).

- Motives (after Grothendieck, Voevodsky, Morel, etc.), finiteness notions and Bloch’s conjecture on surfaces, K-theory (Carlo Mazza).

-  Selberg's class and automorphic functions, transcendence problems, and exponential sums (Giuseppe Molteni).

- Arithmetic of abelian varieties, p-adic L-functions, Heegner points and Stark-Heegner points (Marco Seveso).


Hodge theory, 1-motives, motives, L-functions, K-theory


Andreatta, Fabrizio, Coleman-Oort's conjecture for degenerate irreducible curves. Israel J. Math.187 (2012), 231–285.

Mazza, Carlo, Voevodsky, Vladimir ; Weibel, Charles: Lecture notes on motivic cohomology. Clay Mathematics Monographs, 2.American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. xiv+216 pp. ISBN: 978-0-8218-3847-1; 0-8218-3847-4

Molteni Giuseppe, Representation of a $2$-power as sum of $k$ $2$-powers: the asymptotic behavior, Int. J. Number Theory v.8 n.8, 1923--1963 (2012) (PDF)


Members from the Department of Mathematics
Fabrizio ANDREATTA    info
Luca BARBIERI-VIALE         info
Massimo BERTOLINI    info
Carlo MAZZA    info
Giuseppe MOLTENI    info
Marco SEVESOPostdoc      info
Back to top